Kurzmitteilung / Short Communication

Synthesis of a Novel Annulated C₁-Bridged ansa-Metallocene System

Gerhard Erker*a, Christian Psiorza, Carl Krügerb, and Matthias Nolteb

Organisch-Chemisches Institut der Universität Münster^a, Corrensstraße 40, D-48149 Münster, Germany Max-Planck-Institut für Kohlenforschung^b, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim a. d. Ruhr, Germany

Received April 27, 1994

Key Words: ansa-Metallocenes / Fulvenes / Catalysis, homogeneous / Ziegler-Natta catalysts

2,5-Hexanedione (1) was converted into the bis(fulvene) 2, which was then treated with 2 molar equiv. of ethereal methyllithium to give the novel annulated C_1 -bridged dilithium bis(cyclopentadienide) 5. Reagent 5 was treated with MCl₄

In the 1970s Sinn and Kaminsky discovered that the activation of group-4 bent metallocene complexes by excess oligomeric methylalumoxane generated extremely active homogeneous Ziegler-type catalysts for the polymerization of ethylene and some α olefins^[1]. Then Brintzinger et al. disclosed their syntheses of chiral -[CH₂]_n-bridged ansa-metallocenes of titanium and zirconium^[2]. The combination of these two discoveries has initiated a revolutionary development in stereoselective olefin polymerization^[3]. Since then ansa-metallocenes have been employed in some variety for the generation of homogeneous Ziegler-type catalysts, which are mostly derivatives or analogues of the original Brintzinger systems containing one- or two-carbon- or silicon-atom bridges^[4]. We have now synthesized a novel type of an ansa-metallocene system where the bridging hydrocarbyl moiety contains a fused annulated ring. The examples described below contain a single Cp-Cp bridging unit which constitutes an effective C1 connection and at the same time is part of a C₄-ansa chain. This specific ansa-metallocene system, of which we have prepared the titanium and zirconium derivatives, is very rigid.

We have treated the bis(fulvene) $2^{[5]}$ with two molar equivalents of methyllithium in ether at 0°C to obtain the dilithiated *ansa* ligand **5**. Presumably, the bis(fulvene) **2** is attacked by methyllithium at C-2 of the hydrocarbon chain^[6], thereby generating the substituted Cp anion **3** which then intramolecularly attacks the remaining fulvene functionality^[7] to yield product **4** with a six-membered ring. Subsequent deprotonation of **4** by the additional equivalent of methyllithium then leads to **5** which is treated with one molar equivalent of TiCl₄ in toluene (-78° C to ambient temp.) to give the metallocene **6a** (isolated in 13% yield after recrystallization from dichloromethane). The corresponding *ansa*-zirconocene dichloride **6b** is prepared analogously by treatment of **5** with zirconium tetrachloride (isolated in 14% yield).

The chiral zirconium complex **6b** (C_1 symmetry) exhibits seven cyclopentadienyl CH signals [¹H NMR, (CDCl₃)] at $\delta = 6.72$, 6.69, 6.50, 6.43, 6.05, 5.86, and 5.72 [¹³C NMR (CDCl₃): $\delta = 125.9$, 123.6, 117.9, 116.0, 110.3, 107.3, 105.8 plus three quaternary Cp signals at $\delta = 137.7$, 121.3, and 113.7] and three methyl singlets (¹H NMR) at $\delta = 1.83$, 1.33, and 1.10 (¹³C NMR: $\delta = 35.1$, 27.7,

(M = Ti, Zr) to yield the annulated C_1 -bridged ansa-metallocene dichlorides **6a** and **6b**, respectively. The homogeneous **6a**, **6b**/methylalumoxane Ziegler-type systems were employed in propene polymerization reactions.

26.5). The titanium complex **6a** has been characterized by X-ray diffraction. In **6a** the titanium center is pseudotetrahedrally coordinated to two chloride ligands [Ti-Cl(1) 2.362(1), Ti-Cl(2) 2.331(1) Å] and two cyclopentadienyl groups. The Cp ligands are both η^5 -coordinated. The monosubstituted Cp ligand exhibits a pronounced variation of the metal-carbon bond lengths with short Ti-C(10)/C(11)/C(14) [2.336(2), 2.349(2), 2.351(2) Å] and longer Ti-C(12)/C(13) distances [2.446(3), 2.445(3) Å]. The C(12)-C(13) bond, which is located opposite to the substituted Cp carbon atom C(10), is shorter [1.382(4) Å] than the remaining C(sp²)-C(sp²) Cp bonds [1.411(3)-1.423(3) Å]. The disubstituted cyclopentadienyl ligand exhibits two short [Ti-C(1) 2.328(2), Ti-C(2) 2.291(2) Å] and three longer metal-carbon π contacts [Ti-C(3)/C(4)/C(5)

Chem. Ber. 1994, 127, 1551-1553 © VCH Verlags

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994

0009-2940/94/0808-1551 \$ 10.00+.25/0

1551

Figure 1. View of the molecular geometry of complex 6a in the crystal

The annulated six-membered ring adopts a half-chair conformation. The ring carbon atom C(9) serves as the C₁ bridge between the two cyclopentadienyl rings. The C(1)–C(9) and C(10)–C(9) bond lengths [1.522(3), 1.533(3) Å] are in the typical C(sp²)–C(sp³) σ -bond range. The C(1)–C(9)–C(10) angle [97.1(2)°] deviates from tetrahedral. This is very typical of C₁-bridged *ansa*-titanocenes as is the out-of-plane bending of the C(1)–C(9)/C(10)–C(9) vectors *toward* the metal center by ca. 16–17°. In complex **6a** the Cp(centroid)–Ti–Cp(centroid) angle is 120.9° which is at the low end of the range of corresponding values (ca. 129°–121°) observed for *ansa*-titanocenes^[8]. The Cl(1)–Ti–Cl(2) angle in **6a** is 95.3(1)°.

Both complexes 6a and 6b have been used to generate active homogeneous Ziegler catalysts for propene polymerization. In a typical experiment the ansa-titanocene dichloride 6a is treated with an excess of methylalumoxane ([Al]:[Ti] molar ratio ca. 550:1) in toluene solution at -50°C in the presence of propene. Partly isotactic high-molecular-weight polypropylene ($\bar{M}_{\eta} \approx 680000$) is formed (activity: a = 300 g polymer/g [Ti] · h). According to the ¹³C-NMR methyl pentade analysis^[9] only chain-end stereocontrol has taken place (ca. 40% mmmm, $\sigma = 0.78$). With increasing temperature the chiral metallocene backbone also takes part in the overall stereocontrol of the C-C coupling reaction. Similar to other previously described examples a situation is encountered here where both the "enantiomorphic site" and the chiral chain end are contributing simultaneously to the overall observed stereocontrol (double stereodifferentiation)^[6b,9b] [-40°C: M_{η} = 290000, 40% mmmm, $\omega = 0.29, \alpha = 0.88, \sigma = 0.77; -30^{\circ}\text{C}: \dot{M}_{\eta} = 215000, a = 640, 22\%$ mmmm, $\omega = 0.39$, $\alpha = 0.88$, $\sigma = 0.66$; -20° C: $\bar{M}_{\eta} = 56000$, 24% mmmm, $\omega = 0.56$, a = 0.78, $\sigma = 0.66$; -11° C: $\dot{M_{\eta}} = 23000$, a =1100, 22% mmmm, $\omega = 0.45$, $\alpha = 0.77$, $\sigma = 0.66$].

Activation of the analogous *ansa*-zirconocene dichloride **6b** with methylalumoxane ([Al]:[Zr] = 310:1) generates a catalyst which produces a polypropylene with a different stereochemical characteristic. At -30° C a polymer is obtained (a = 330; $\tilde{M}_{\eta} = 26000$)

that is slightly syndiotactic. In the methyl region of the ¹³C-NMR spectrum (1,2,4-trichlorobenzene, +90°C) the mmmm signal is absent (<2% mmmn, 21% rrrr, 20% mrrr; chain-end control model: $\sigma = 0.32$). At -50°C (a = 17; $\bar{M}_{\eta} = 29000$, 23% rrrr, 20% mrrr, $\sigma = 0.31$) and -5°C (a = 1500; $\bar{M}_{\eta} = 5000$, 18% rrrr, 19% mrrr, $\sigma = 0.35$) similar polypropylenes are formed.

From the structure of the titanium compound it appears that the group-4 metal centers in the new *ansa*-metallocenes **6** and the catalysts derived thereof are rather exposed and easy to approach by incoming ligands. This results in high catalyst activities and a rapid decrease of polymer molecular weights with increasing temperatures. This special feature may provide a very suitable basis for developing novel homogeneous Ziegler-type systems to be employed in catalytic carbon-carbon coupling processes for the synthesis of monomeric organic products. We have begun to prepare derivatives of **6** that can be used as active catalysts in organic synthesis.

Financial support from the Fonds der Chemischen Industrie and the Alfried Krupp von Bohlen und Halbach Stiftung is gratefully acknowledged.

Experimental

All reactions were carried out under Ar using Schlenk-type glassware or in a glovebox. Solvents were dried and distilled under Ar prior to use. For additional general information including a list of spectrometers used see ref.^[9b].

Preparation of **6a**: The lithium reagent $5 \cdot 2$ Et₂O was prepared by addition of 62.4 ml of a 1.6 M ethereal CH₃Li solution to a solution of 10.0 g (47.5 mmol) of bis(fulvene) 2^[5] in 150 ml of ether; 13.2 g (89%) of 5 was isolated after washing with pentane. Complex 6a was obtained from the reaction of TiCl₄ (3.3 g, 17.5 mmol) with 5.5 g (17.5 mmol) of 5 · 2 Et₂O in 200 ml of toluene (-78°C to room temp.); yield 780 mg (13%), m.p. 260°C (DSC). $- {}^{1}$ H NMR (CDCl₃): $\delta = 7.05, 6.92, 6.80, 6.78, 5.86, 5.80, 5.60$ (m, each 1H, cyclopentadienyl CH), 2.5-2.2 (m, 2H, CH₂), 1.99-1.82 and 1.75-1.63 (m, 2H, CH₂), 1.86, 1.25, 1.11 (s, each 3H, CH₃). - ¹³C NMR (CDCl₃): δ = 142.3, 114.8, 106.9, 37.0, 33.7 (quat. C), 134.1, 131.6, 126.3, 126.2, 113.6, 112.1, 111.1 (CH), 35.3, 31.5 (CH₂), 35.4, 27.4, 25.5 (CH₃). $- C_{17}H_{20}Cl_2Ti$ (343.15): calcd. C 59.50, H 5.87; found C 59.54, H 5.97. - X-ray crystal structure analysis: monoclinic; space group $P2_1/n$; a = 9.233(2), b = 10.543(1), c = 16.665(1) Å; $\beta = 105.62(1)^{\circ}; Z = 4; \lambda = 0.71069$ Å; 3889 total, 3565 independent, 2914 observed reflections; 181 refined parameters; R = 0.033, $R_w = 0.042^{[10]}$.

Preparation of **6b**: Complex **6b** was prepared by reaction of 9.6 g (30.7 mmol) of **5** with 7.5 g (32.2 mmol) of ZrCl₄ analogously as described above; yield 1.7 g (14%) after extraction with pentane, m.p. 223°C (decomp.; DSC). $-C_{17}H_{20}Cl_2Zr$ (386.47): calcd. C 52.83, H 5.22; found C 52.35, H 5.19. – For spectral data see text.

- [2] H. Schnutenhaus, H. H. Brintzinger, Angew. Chem. 1979, 91, 837; Angew. Chem. Int. Ed. Engl. 1979, 18, 777.
- [3] W. Kaminsky, K. Külper, H. H. Brintzinger, F. R. W. P. Wild, Angew. Chem. 1985, 97, 507; Angew. Chem. Int. Ed. Engl. 1985, 24, 507; J. A. Ewen, J. Am. Chem. Soc. 1984, 106, 6355.
- ^[4] See e.g.: P. Burger, J. Diebold, S. Gutmann, H.-U. Hund, H. H. Brintzinger, Organometallics 1992, 11, 1319; B. Dorer, J. Diebold, O. Weynand, H. H. Brintzinger, J. Organomet. Chem. 1992, 427, 245; J. A. Ewen, L. Haspeslagh, J. L. Atwood, H. Zhang, J. Am. Chem. Soc. 1987, 109, 6544; C. M. Fendrick, L. D. Schertz, V. W. Day, T. J. Marks, Organometallics 1988, 7, 1828; W. A. Herrmann, J. Rohrmann, E. Herdtweck, W. Spa-

Chem. Ber. 1994, 127, 1551-1553

^[1] H. Sinn, W. Kaminsky, *Adv. Organomet. Chem.* **1980**, *18*, 99, and references cited therein.

leck, A. Winter, Angew. Chem. 1989, 101, 1536; Angew. Chem. Int. Ed. Engl. 1989, 28, 1511; W. Spaleck, M. Antberg, J. Rohrmann, A. Winter, B. Bachmann, P. Kiprof, J. Behm, W. A. Rohrmann, A. Winter, B. Bachmann, P. Kiprof, J. Behm, W. A. Herrmann, Angew. Chem. 1992, 104, 1373; Angew. Chem. Int. Ed. Engl. 1992, 31, 1347; S. Collins, Y. Hong, R. Ramanchandran, N. J. Taylor, Organometallics 1991, 10, 2349; D. T. Mallin, M. D. Rausch, Y.-G. Lin, S. Dong, J. C. W. Chien, J. Am. Chem. Soc. 1990, 112, 2030; G. H. Llinas, S.-H. Dong, D. T. Mallin, M. D. Rausch, Y.-G. Lin, H. H. Winter, J. C. W. Chien, Macromolecules 1992, 25, 1242; J. A. Bandy, M. L. H. Green, I. M. Gardiner, K. Prout, J. Chem. Soc., Dalton Trans. 1991, 2207; R. Gomez, T. Cuenca, P. Royo, E. Hovestreydt, Organometallics 1991, 10, 2516; G. Erker, S. Wilker, C. Krüger, R. Goddard, J. Am. Chem. Soc. 1992, 114, 10983; G. Erker, S. Wilker, C. Krüger, M. Nolte, Organometallics 1993, 12, 2140; Wilker, C. Krüger, M. Nolte, Organometallics 1993, 12, 2140; and literature cited in these references.

- ^[5] M. S. Erickson, J. M. Cronan, J. G. Garcia, M. L. Mc Laughlin, J. Org. Chem. 1992, 57, 2504; for the general synthetic method used see: K. J. Stone, R. D. Little, J. Org. Chem. 1984, 49, 1849.
- ^[6] [^{6a]} P. Renaut, G. Tainturier, B. Gautheron, J. Organomet. Chem. 1978, 148, 35, 43. ^[6b] G. Erker, R. Nolte, Y.-H. Tsay, C. Krüger, Angew. Chem. 1989, 101, 642; Angew. Chem. Int. Ed. Engl. 1989, 28, 628.
- [7] For related coupling reactions involving fulvenes see e.g.: K. Hafner, Angew. Chem. 1958, 70, 419; M. Neuenschwander, P.

Kronig, S. Schönholzer, M. Slongo, B. Uebersax, C. Rentsch, Croat. Chem. Acta 1980, 53, 625; P. Kronig, M. Slongo, M. Neuenschwander, Makromol. Chem. 1982, 163, 359.

- J. A. Smith, J. von Seyerl, G. Huttner, H. H. Brintzinger, J. Organomet. Chem. 1979, 173, 175; W. Röll, L. Zsolnai, G. Organomet. Chem. 1979, 173, 175; W. Röll, L. Zsolnai, G. Huttner, H. H. Brintzinger, J. Organomet. Chem. 1987, 322, 65;
 I. E. Nifant'ev, A. V. Churakov, I. F. Urazowski, Sh. G. Mkoyan, L. O. Atovmyan, J. Organomet. Chem. 1992, 435, 37;
 T. K. Hollis, A. L. Rheingold, N. P. Robinson, J. Whelan, B. Bosnich, Organometallics 1992, 11, 2812; M. E. Huttenloch, J. Diebold, U. Rief, H.-H. Brintzinger, A. M. Gilbert, T. J. Katz, Organometallics 1992, 114, 2276.
 ^[9a] F. A. Bovey, G. V. D. Tiers, J. Polym. Sci. 1960, 44, 173; R. A. Sheldon, T. Fueno, T. Tsuntsuga, J. Kurukawa, J. Polym. Sci., Part B: Polym. Lett. 1965, 3, 23; J. Inoue, Y. Itabashi, R. Chujo, Y. Doi, Polymer 1984, 25, 1640. – ^[9b] G. Erker, R. Nolte, R. Aul, S. Wilker, C. Krüger, R. Noe, J. Am. Chem. Soc. 1991, 113, 7594.
- [9]
- ^[10] Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the depository number CSD-58408, the names of the authors, and the journal citation.

[150/94]